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Learning objectives for this lesson

• By the end of this lesson, you should be able to…

• Explain what “cloud” computing is and why it is 
important

• Describe the difference between virtual machines 
and containers

• Explain why virtual machines and containers are 
important in cloud computing



How to deploy web apps?

• What we need:

• A server that can run our application

• A network that is configured to route requests from 
an address to that server

• Questions to think about:

• What software do we need to run besides our 
application code?

• Where does this server come from?

• Who else gets to use this server?

• Who maintains the server and software?



Many apps rely on common infrastructure

• Content delivery network: caches 
static content “at the edge” (e.g. 
cloudflare, Akamai)

• Web servers: Speak HTTP, serve static 
content,
load balance between app servers 
(e.g. haproxy, traefik)

• App servers: Runs our application

• Misc services: Logging, monitoring, 
firewall

• Database servers: Persistent data
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Many apps typically share the same 
infrastructure
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What is the infrastructure that needs to be 
shared?

• Our apps run on a “tall stack” of 
dependencies

• Traditionally this full stack is self-
managed

• Cloud providers offer products that 
manage parts of that stack for us:

• “Infrastructure as a service”

• “Platform as a service”

• “Software as a Service”



Cloud infrastructure creates economies of 
scale
• At the physical level:

• Multiple customers’ physical machines in the same data center

• Save on physical costs (centralize power, cooling, security, 
maintenance)

• At the physical server level:

• Multiple customers’ virtual machines in the same physical 
machine

• Save on resource costs (utilize marginal computing capacity)

• At the application level:

• Multiple customer’s applications hosted in same virtual machine

• Save on resource overhead (eliminate redundant infrastructure 
like OS)
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Cloud infrastructure scales elastically

• “Traditional” computing infrastructure requires capital 
investment

• “Scaling up” means buying more hardware, or 
maintaining excess capacity for when scale is needed

• “Scaling down” means selling hardware, or powering 
it off

• Cloud computing scales elastically:

• “Scaling up” means allocating more shared resources

• “Scaling down” means releasing resources into a pool

• Billed on consumption (usually per-second, per-
minute or per-hour)



Cloud infrastructure gives on-demand access 
to resources

• Vendor provides a service catalog of “X as a service” 
abstractions 

• API allows us to provision resources on-demand



Infrastructure as a Service: Virtual Machines

• Virtual machines:

• Virtualize a single large server into 
many smaller machines

• OS limits resource usage and 
guarantees quality per-VM

• Each VM in its own OS

• Examples: Amazon EC2, Google 
Compute Engine, Azure



• The “instruction set” is an 
abstraction of the 
underlying hardware

• The operating system 
presents the same 
abstraction + OS calls. 

Let’s look more closely at this software stack
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The operating system allows several apps to 
share the underlying hardware
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Virtual Machine 1

A virtual machine layer allows several different 
operating systems to share the same hardware
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Virtual Machines facilitate multi-tenancy

• Multi-Tenancy

• Multiple customers sharing same physical 
machine, oblivious to each other

• Decouples application from hardware

• virtualization service can provide “live migration”

• Faster to provision and release

• VM v. physical machines == ~mins v. ~hours



Virtual Machines to Containers

• Each VM contains a full operating system

• What if each application could run in the same 
(overall) operating system? Why have multiple 
copies?

• Advantages to smaller apps:

• Faster to copy (and hence provision)

• Consume less storage at rest



Infrastructure as a Service: Containers

• Each application is encapsulated in a “lightweight 
container,” includes:

• System libraries (e.g. glibc)

• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller 
than VM images - multi tenant containers run in the 
OS

• Cloud providers offer “containers as a service” 
(Amazon ECS Fargate, Azure Kubernetes, 
Google Kubernetes)



• You might put several 
apps in a single 
container, together with 
their dependencies

• Might have only one 
copy of shared 
dependencies

A container contains your apps and all their 
dependencies
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• Vendor supplies an on-
demand instance of an 
operating system

• Eg: Linux version NN

• Vendor is free to 
implement that instance 
in a way that optimizes 
costs across many 
clients.

Infrastructure as a Service: with containers
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• Docker provides a 
standardized interface 
for your container to use

• Many vendors will host 
your Docker container

Infrastructure as a Service: Docker
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Platform-as-a-Service: vendor supplies OS + 
middeware

• Middleware is the stuff between our app and a 
user’s requests:

• Load balancer: route client requests to one of 
our app containers

• Application server: run our handler functions 
in response to requests from load balancer

• Monitoring/telemetry: log requests, response 
times and errors

• Cloud vendors provide managed middleware 
platforms too: “Platform as a Service”
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PaaS is often the simplest choice for app 
deployment

• Platform-as-a-Service provides components most 
apps need, fully managed by the vendor: load 
balancer, monitoring, application server

• Heroku, AWS Elastic Beanstalk, Google App Engine

• Some PaaSs deploy apps as single functions invoked 
only when a web request is made

• AWS Lambda, Google Cloud Functions, Azure 
Functions

• Some PaaSs provide databases and authentication

• Google Firebase, Back4App
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Heroku’s PaaS

• Takes a web app as input

• No container, only need entry point to code, e.g. 
“npm start”

• Hosts web app at chosen URL, can scale resources 
up/down on-demand

• Load balancer fully managed by Heroku, scaling 
transparent

• Auto-scale down to use no resources, spins up 
container on reception of a request

• Dashboard for monitoring/reporting
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Software as a Service adds more vendor-
managed apps

• Providers may also develop custom software 
offered only as a service

• Examples:

• PostgreSQL (open source)

• Twilio Programmable Video (proprietary chat) 
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Self-managed vs Vendor-managed 
Infrastructure
• Benefits to vendor-managed options:
• More ways to reduce resource 

consumption, improve resource 
utilization

• Less management burden
• Less capital investment, greater 

operating expenses
• Benefits to self-managed options:
• Greater flexibility and avoid vendor 

lock-in
• More capital investment, less 

operating expenses
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Cloud Infrastructure is best for variable 
workloads
• Consider: 

• Does your workload benefit from ability to scale up or down?

• Example: 

• need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud: 

• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)

• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud: 

• Amazon EC2 Pricing (M5.xlarge instances, $0.121/VM-hour)

• 10 VMs for 1 year + 290 VMs for 1 month: $36,215.30 

• 300 VMs for 1 year: $317,988



Public clouds are not the only option
• “Public” clouds are connected to the internet and available 

for anyone to use

• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises, 
self-managed hardware

• Cost-effective when a large scale of baseline resources are 
needed

• Example management software: OpenStack, VMWare, 
Proxmox, Kubernetes

• “Hybrid” clouds integrate private and public (or multiple 
public) clouds

• Effective approach to “burst” capacity from private cloud 
to public cloud



Review

• You should now be able to…

• Explain what “cloud” computing is and why it is 
important

• Describe the difference between virtual machines 
and containers

• Explain why virtual machines and containers are 
important in cloud computing


	Slide 1: CS 4530 Software Engineering  Module 13: Principles and Patterns of Cloud Infrastructure
	Slide 2: Learning objectives for this lesson
	Slide 3: How to deploy web apps?
	Slide 4: Many apps rely on common infrastructure
	Slide 5: Many apps typically share the same infrastructure
	Slide 6: What is the infrastructure that needs to be shared?
	Slide 7: Cloud infrastructure creates economies of scale
	Slide 8: Cloud infrastructure scales elastically
	Slide 9: Cloud infrastructure gives on-demand access to resources
	Slide 10: Infrastructure as a Service: Virtual Machines
	Slide 11: Let’s look more closely at this software stack
	Slide 12: The operating system allows several apps to share the underlying hardware
	Slide 13: A virtual machine layer allows several different operating systems to share the same hardware
	Slide 14: Virtual Machines facilitate multi-tenancy
	Slide 15: Virtual Machines to Containers
	Slide 16: Infrastructure as a Service: Containers
	Slide 17: A container contains your apps and all their dependencies
	Slide 18: Infrastructure as a Service: with containers
	Slide 19: Infrastructure as a Service: Docker
	Slide 20: Platform-as-a-Service: vendor supplies OS + middeware
	Slide 21: PaaS is often the simplest choice for app deployment
	Slide 22: Heroku’s PaaS
	Slide 23: Software as a Service adds more vendor-managed apps
	Slide 24: Self-managed vs Vendor-managed Infrastructure
	Slide 25: Cloud Infrastructure is best for variable workloads
	Slide 26: Public clouds are not the only option
	Slide 27: Review

