
CS 4530 Software Engineering

Module 13: Principles and Patterns of Cloud Infrastructure

Khoury College of Computer Sciences
© 2023 released under CC BY-SA

Adeel Bhutta, Jan Vitek and Mitch Wand

Khoury College of Computer Sciences

http://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson

• By the end of this lesson, you should be able to…

• Explain what “cloud” computing is and why it is
important

• Describe the difference between virtual machines
and containers

• Explain why virtual machines and containers are
important in cloud computing

How to deploy web apps?

• What we need:

• A server that can run our application

• A network that is configured to route requests from
an address to that server

• Questions to think about:

• What software do we need to run besides our
application code?

• Where does this server come from?

• Who else gets to use this server?

• Who maintains the server and software?

Many apps rely on common infrastructure

• Content delivery network: caches
static content “at the edge” (e.g.
cloudflare, Akamai)

• Web servers: Speak HTTP, serve static
content,
load balance between app servers
(e.g. haproxy, traefik)

• App servers: Runs our application

• Misc services: Logging, monitoring,
firewall

• Database servers: Persistent data

Content

Delivery

Network

Web

Servers

App

Servers

Database

servers

Misc

Services

Clients

Many apps typically share the same
infrastructure

Content

Delivery

Network

Web

Servers

App

Servers

Database

servers

Misc

Services

Client 1 App 1

Client 3 App 3

Client 2 App 2

What is the infrastructure that needs to be
shared?

• Our apps run on a “tall stack” of
dependencies

• Traditionally this full stack is self-
managed

• Cloud providers offer products that
manage parts of that stack for us:

• “Infrastructure as a service”

• “Platform as a service”

• “Software as a Service”

Cloud infrastructure creates economies of
scale
• At the physical level:

• Multiple customers’ physical machines in the same data center

• Save on physical costs (centralize power, cooling, security,
maintenance)

• At the physical server level:

• Multiple customers’ virtual machines in the same physical
machine

• Save on resource costs (utilize marginal computing capacity)

• At the application level:

• Multiple customer’s applications hosted in same virtual machine

• Save on resource overhead (eliminate redundant infrastructure
like OS)

Multiple customers

could share each of

these tiers

Cloud infrastructure scales elastically

• “Traditional” computing infrastructure requires capital
investment

• “Scaling up” means buying more hardware, or
maintaining excess capacity for when scale is needed

• “Scaling down” means selling hardware, or powering
it off

• Cloud computing scales elastically:

• “Scaling up” means allocating more shared resources

• “Scaling down” means releasing resources into a pool

• Billed on consumption (usually per-second, per-
minute or per-hour)

Cloud infrastructure gives on-demand access
to resources

• Vendor provides a service catalog of “X as a service”
abstractions

• API allows us to provision resources on-demand

Infrastructure as a Service: Virtual Machines

• Virtual machines:

• Virtualize a single large server into
many smaller machines

• OS limits resource usage and
guarantees quality per-VM

• Each VM in its own OS

• Examples: Amazon EC2, Google
Compute Engine, Azure

• The “instruction set” is an
abstraction of the
underlying hardware

• The operating system
presents the same
abstraction + OS calls.

Let’s look more closely at this software stack

Hardware

ISA

Operating System

ISA+OS Calls

Your App

App
Dependencies

The operating system allows several apps to
share the underlying hardware

Hardware

ISA

Operating System
ISA+OS Calls

App1

App1
Dependencies

App2

App2
Dependencies

Virtual Machine 1

A virtual machine layer allows several different
operating systems to share the same hardware

Hardware

ISA

OS1

App1

App1
Depe
nden
cies

App2

App2
Depe
nden
cies

Virtual Machine Manager

ISA

Virtual Machine 2

ISA

OS2

App1

App1
Depe
nden
cies

App2

App2
Depe
nden
cies

Virtual Machines facilitate multi-tenancy

• Multi-Tenancy

• Multiple customers sharing same physical
machine, oblivious to each other

• Decouples application from hardware

• virtualization service can provide “live migration”

• Faster to provision and release

• VM v. physical machines == ~mins v. ~hours

Virtual Machines to Containers

• Each VM contains a full operating system

• What if each application could run in the same
(overall) operating system? Why have multiple
copies?

• Advantages to smaller apps:

• Faster to copy (and hence provision)

• Consume less storage at rest

Infrastructure as a Service: Containers

• Each application is encapsulated in a “lightweight
container,” includes:

• System libraries (e.g. glibc)

• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller
than VM images - multi tenant containers run in the
OS

• Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)

• You might put several
apps in a single
container, together with
their dependencies

• Might have only one
copy of shared
dependencies

A container contains your apps and all their
dependencies

Hardware

ISA

Operating System
ISA+OS Calls

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

• Vendor supplies an on-
demand instance of an
operating system

• Eg: Linux version NN

• Vendor is free to
implement that instance
in a way that optimizes
costs across many
clients.

Infrastructure as a Service: with containers

Hardware

ISA

Operating System
ISA+OS Calls

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

We don’t care what’s under here: it’s an
abstraction!

• Docker provides a
standardized interface
for your container to use

• Many vendors will host
your Docker container

Infrastructure as a Service: Docker

Hardware

ISA

Operating System
Docker

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

We don’t care what’s under here: it’s an
abstraction!

Platform-as-a-Service: vendor supplies OS +
middeware

• Middleware is the stuff between our app and a
user’s requests:

• Load balancer: route client requests to one of
our app containers

• Application server: run our handler functions
in response to requests from load balancer

• Monitoring/telemetry: log requests, response
times and errors

• Cloud vendors provide managed middleware
platforms too: “Platform as a Service”

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

IaaS: Containers

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS

PaaS is often the simplest choice for app
deployment

• Platform-as-a-Service provides components most
apps need, fully managed by the vendor: load
balancer, monitoring, application server

• Heroku, AWS Elastic Beanstalk, Google App Engine

• Some PaaSs deploy apps as single functions invoked
only when a web request is made

• AWS Lambda, Google Cloud Functions, Azure
Functions

• Some PaaSs provide databases and authentication

• Google Firebase, Back4App
Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS

Heroku’s PaaS

• Takes a web app as input

• No container, only need entry point to code, e.g.
“npm start”

• Hosts web app at chosen URL, can scale resources
up/down on-demand

• Load balancer fully managed by Heroku, scaling
transparent

• Auto-scale down to use no resources, spins up
container on reception of a request

• Dashboard for monitoring/reporting
Container

Our NodeJS App

Container

Our NodeJS App

Load balancer +

traffic monitor

HTTP requests

Software as a Service adds more vendor-
managed apps

• Providers may also develop custom software
offered only as a service

• Examples:

• PostgreSQL (open source)

• Twilio Programmable Video (proprietary chat)

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

IaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

Self-managed vs Vendor-managed
Infrastructure
• Benefits to vendor-managed options:
• More ways to reduce resource

consumption, improve resource
utilization

• Less management burden
• Less capital investment, greater

operating expenses
• Benefits to self-managed options:
• Greater flexibility and avoid vendor

lock-in
• More capital investment, less

operating expenses

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

IaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Traditional, on-

premises computing

Virtualization

Cloud Infrastructure is best for variable
workloads
• Consider:

• Does your workload benefit from ability to scale up or down?

• Example:

• need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud:

• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)

• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud:

• Amazon EC2 Pricing (M5.xlarge instances, $0.121/VM-hour)

• 10 VMs for 1 year + 290 VMs for 1 month: $36,215.30

• 300 VMs for 1 year: $317,988

Public clouds are not the only option
• “Public” clouds are connected to the internet and available

for anyone to use

• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises,
self-managed hardware

• Cost-effective when a large scale of baseline resources are
needed

• Example management software: OpenStack, VMWare,
Proxmox, Kubernetes

• “Hybrid” clouds integrate private and public (or multiple
public) clouds

• Effective approach to “burst” capacity from private cloud
to public cloud

Review

• You should now be able to…

• Explain what “cloud” computing is and why it is
important

• Describe the difference between virtual machines
and containers

• Explain why virtual machines and containers are
important in cloud computing

	Slide 1: CS 4530 Software Engineering Module 13: Principles and Patterns of Cloud Infrastructure
	Slide 2: Learning objectives for this lesson
	Slide 3: How to deploy web apps?
	Slide 4: Many apps rely on common infrastructure
	Slide 5: Many apps typically share the same infrastructure
	Slide 6: What is the infrastructure that needs to be shared?
	Slide 7: Cloud infrastructure creates economies of scale
	Slide 8: Cloud infrastructure scales elastically
	Slide 9: Cloud infrastructure gives on-demand access to resources
	Slide 10: Infrastructure as a Service: Virtual Machines
	Slide 11: Let’s look more closely at this software stack
	Slide 12: The operating system allows several apps to share the underlying hardware
	Slide 13: A virtual machine layer allows several different operating systems to share the same hardware
	Slide 14: Virtual Machines facilitate multi-tenancy
	Slide 15: Virtual Machines to Containers
	Slide 16: Infrastructure as a Service: Containers
	Slide 17: A container contains your apps and all their dependencies
	Slide 18: Infrastructure as a Service: with containers
	Slide 19: Infrastructure as a Service: Docker
	Slide 20: Platform-as-a-Service: vendor supplies OS + middeware
	Slide 21: PaaS is often the simplest choice for app deployment
	Slide 22: Heroku’s PaaS
	Slide 23: Software as a Service adds more vendor-managed apps
	Slide 24: Self-managed vs Vendor-managed Infrastructure
	Slide 25: Cloud Infrastructure is best for variable workloads
	Slide 26: Public clouds are not the only option
	Slide 27: Review

